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Abstract

We provide a theory of strategic interactions in static games in the presence of ignorance, i.e.,
when players cannot produce beliefs as probability measures (or similia) concerning the uncer-
tain elements present in the interaction they are involved in. Assuming only players’ ordinal
preferences as transparent, we investigate players that are either optimistic or pessimistic,
that we deem tropical players. To explicitly formalize these attitudes, we employ tools from
interactive epistemology, by defining the corresponding epistemic events in epistemic possibil-
ity structures, which are the counterpart of epistemic type structures suited for our analysis
in the presence of ignorance, We show that the behavioral implications related to common
belief in these events have algorithmic counterparts in terms of iterative deletion procedures.
While optimism is related to Point Rationalizability, to capture pessimism we introduce a new
algorithm, deemed Wald Rationalizability. We show that the algorithmic procedure capturing
optimism selects a subset of the strategies selected by the algorithmic procedure capturing
pessimism. Additionally, we compare both algorithmic procedures to an analogous algorithm
based on Börgers dominance, deemed Börgers Rationalizability, and we show that in generic
static games both Point Rationalizability and Wald Rationalizability select a subset of the
actions selected by Börgers Rationalizability. More generally, while we prove that dropping
the genericity assumption does not change the relation between Point Rationalizability and
Börgers Rationalizability, we show that Wald and Börgers Rationalizability are not compara-
ble in their behavioral implications, and we shed light on why this difference emerges. Finally,
we explore connections to strategic wishful thinking.

Keywords: Ignorance, Ordinal Preferences, Interactive Epistemology, Optimism/Pessimism,
Algorithmic Procedures, Rationalizability.
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“. . . une nature [. . . ] qui tient [. . . ] aux Tropiques par la violence illogique de ses passions. . . ”§

—Honoré de Balzac, “Le contrat de mariage”

1. Introduction

1.1 Motivation & Results

When we approach a game as analysts, it is natural and rather common on our side to make the
following two—strictly related—assumptions:

1. that every player involved in the game has a belief concerning her opponents’ behavior
represented via a probability measure (or similia);

2. that we know players’ risk preferences, that also happen to be transparent1 between the
players.

∗Pierfrancesco thankfully acknowledges financial support from the Austrian Science Fund (FWF) (P31248-G27).
†Alpen-Adria-Universität Klagenfurt (Institut für Volkswirtschaftslehre). E-mail: pf.guarino@hotmail.com.
‡University of Edinburgh (School of Economics). E-mail: ziegler@ed.ac.uk.
§The authors wish to distance themselves from the usage of the adjective “illogique” by Mr. de Balzac.
1That is, common knowledge in the informal sense of the term.
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The first assumption is a pervasive one in game theory: while in the “probability measure” lies
the cornerstone of the Bayesian approach à la Savage (1954), the “or similia” innocently hides the
literature on ambiguity stemming from Schmeidler (1989) and Gilboa & Schmeidler (1989).2 The
second one, which goes back to the contribution of the founding fathers of game theory, namely, the
seminal von Neumann & Morgenstern (1953), is related to the notion of cardinal utility and—as
such—to various mathematical properties that considerably generalize the scope of game theory.
That these two assumptions are related comes from the fact that cardinal preferences and expected
utility computations crucially need a probability measure (or similia).

However, it should be as natural and common as the two assumptions described above to ask
ourselves what happens when we relax them. Indeed, we can perfectly imagine that a player can
find herself in position not to be able to describe her beliefs via any form of probability measure
(or similia). When this is the case, references to risk attitudes of the players (and—even more so—
their transparency between players) are irrelevant, if not out of place. This kind of situations are
said to be interactions in presence of ignorance (see Milnor (1954), Luce & Raiffa (1957, Chapter
10), and Arrow & Hurwicz (1977)). Thus, it seems a much needed pursuit that of investigating
what predictions we obtain in presence of ignorance.

In this paper we proceed exactly with this endeavor. Thus, we start by focusing on games
with ordinal preferences, i.e., where only ordinal preferences over the outcomes of the game are
transparent between the players. In this context, we have to describe what form players’ beliefs can
take and—given those beliefs—what decision criteria players can follow in the face of ignorance.
Thus, regarding the first issue, we study players whose beliefs are represented via collections of
actions of their opponents. Regarding decision criteria, going back to Wald (1950), we identify two
possible attitudes that one of our player, with her rather coarse beliefs, can have concerning her
play:

• she can be optimistic, in which case she is going to assume that, for every action of hers, her
opponents choose their actions (from the actions she contemplates as possible), to maximize
her utility and—consequently—she is going to choose the action that gives her the highest
utility accordingly;

• she can be pessimistic, in which case she is going to assume that, for every action of hers, her
opponents choose their actions (from the actions she contemplates as possible), to minimize
her utility and—consequently—she is going to choose the action that gives her the highest
utility accordingly.

Given the above defined attitudes, we study what are the behavioral implications of having one
of these attitudes along with the corresponding common belief in it. Additionally, to simplify
the identifications of those behavioral predictions, we provide algorithmic characterization of our
‘common belief’ notions.

In particular, to provide an explicit analysis of the problem at hand, we perform our investi-
gation by employing the tools of epistemic game theory. Thus, with respect to this point, first
of all, we identify in Definition 2.1 the framework appropriate for our analysis, which happens
to be that of epistemic possibility structures of Mariotti et al. (2005, Sections 2 & 3). The main
difference between epistemic possibility structures and epistemic type structures as they are com-
monly used in the literature,3 is that in epistemic possibility structures beliefs are represented
exactly in the coarse way described above, i.e., as collections of actions. With epistemic possi-
bility structures at our disposal, we proceed by defining those epistemic events that correspond
to a player being optimistic or pessimistic (respectively, in Equation (2.1) and Equation (2.2))
and, by employing modal operators capturing belief and common belief (as it is standard in the
epistemic game theory literature), we define in Definition 2.2 the events in epistemic possibility
structures of Optimism/Pessimism and Common Belief in Optimism/Pessimism. As our informal
description of being optimistic or pessimistic above already suggests, the two different attitudes
can be captured respectively by a max max and a max min criterion, which is the reason behind
our choice of calling our players “tropical”, in light of what is known as tropical algebra, which
studies the algebraic properties of structures where max and min are possible operators.4 Having

2See the comprehensive survey Gilboa & Marinacci (2011).
3See the comprehensive survey Dekel & Siniscalchi (2015).
4The exotic name of this branch of algebra was chosen by French mathematicians to honor Imre Simon, the first—

Brazilian—mathematician who worked extensively on the topic. See Speyer & Sturmfels (2009) and Footnote 11.
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established the epistemic events of interest, we proceed by providing their algorithmic characteri-
zations. Thus, In Definition 3.1 we give a definition in our language of Point Rationalizability of
Bernheim (1984), that we show in Theorem 2 algorithmically characterizes Optimism and Common
Belief in Optimism. Also, in Definition 3.2, we introduce a new procedure with a Rationalizability
flavor, deemed Wald Rationalizability,5 that we show in Theorem 3 algorithmically characterizes
Pessimism and Common Belief in Pessimism. Interestingly, as we show in Appendix A.2, we can
provide one proof for the two algorithmic characterizations. Regarding a comparison of the two
algorithmic procedures, it turns out that we can produce a result, i.e., Proposition 4, that supports
our intuition: the set of actions that survive Point Rationalizability is a subset of the set of actions
that survive Wald Rationalizability. In other terms, Pessimism and Common Belief in Pessimism
allows more than its optimistic counterpart.

As we described in the preceding paragraphs, our focus is on players with beliefs represented
by collections of opponents’ actions that can be optimistic or pessimistic in ordinal games. It
is then natural to investigate the relation between our notions of Rationalizability and a form
of Rationalizability built on Börgers Dominance, in light of the latter being a notion specifically
designed for ordinal games. First of all, then, it has to be recalled that Börgers Dominance has
been introduced6 in Börgers (1993) to capture in ordinal games the notion of justifiability,7 which
in the original article means that for every justifiable action we can produce a probability measure
and a von Neumann-Morgenstern utility function that agrees with the player’s ordinal preferences
according to which the action is a maximizer. It is this point that already hints at the fact that there
is an intrinsically Bayesian nature (i.e., utility function and probability measure) in this dominance
notion.8 Given this, two recent contributions studied this notion in detail. On one side, Weinstein
(2016, Proposition 3) shows that the set of (standard) rationalizable action profiles converges to
the—opportunely defined—Börgers rationalizable action profiles as players become infinitely risk
averse, whereas point rationalizable action profiles are the result of players becoming infinitely risk
seeking (as shown in Weinstein (2016, Proposition 2)). On the other side, starting from a notion of
rationality defined as choosing an action that is weakly undominated by a pure action relative to
the opponents’ actions that are deemed possible,9 Bonanno & Tsakas (2018, Theorem 1) show that
Rationality and Common Belief in Rationality (as defined above) is algorithmically characterized
by an algorithmic procedure that iteratively eliminates actions that are Börgers dominated.

To be able to compare different notions, in Equation (4.3) we define in our language the notion
of rationality of Bonanno & Tsakas (2018, Definition 2, Section 3), that we call “Admissibility”,
and we replicate Bonanno & Tsakas (2018, Theorem 1) by showing that Admissibility and Com-
mon Belief in Admissibility is algorithmically characterized by an opportunely defined Börgers
Rationalizability (as in Definition 4.1). Armed with this result as a benchmark, we compare Börg-
ers Rationalizability to Point Rationalizability and Wald Rationalizability: while we can state in
Proposition 7 that Point Rationalizability always selects a subset of the profiles of actions selected
by Börgers Rationalizability, we show that there is no inclusion relation between Börgers and
Wald Rationalizability. However, interestingly, we establish in Proposition 8 that in generic games
Börgers Rationalizability always selects a superset of the profiles of actions selected by Wald Ra-
tionalizability. This is a curious result which might seem counterintuitive and that naturally leads
to the following—strictly related to the results in Weinstein (2016) mentioned above—question:
if one treats admissibility as a rationality postulate under ignorance, shouldn’t it be sandwiched
between optimism and pessimism?

In Section 5.5 and Section 5.4, we discuss the issues related with this result and we provide
a detailed answer to this superficially puzzling question. Here, we provide an immediate answer
by identifying the intuition behind the discussion in the two aforementioned sections. On one
side, we have no agreed rationality benchmark in epistemic terms when players do not hold beliefs

5The maxmin decision criterion goes back to Wald (1950, Chapter 1.4.2, p.18). The maxmax criterion can be
obtained by replacing the convexity axiom in Milnor (1954) with an concavity axiom.

6As “Pure Strategy Dominance” in the title, whereas in the body of the article it is simply called “dominance”.
7Börgers (1993) actually does not use the word “justifiability”: rather, he deems an action rational if it satisfies

the condition described in the main body. The recent literature on epistemic game theory distinguishes rationality
and justifiability in the following way: an action is justifiable, while an action-type pair is rational (see Battigalli
et al. (Work in Progress). Since our contribution is related to the epistemic game theory literature, we employ this
recent terminology.

8See also the take on it in Dekel & Siniscalchi (2015, Section 12.6.5).
9See Section 4 and Section 5.4 for a thorough discussion of this notion of rationality.
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in the form of probability measures (or similia). On the other side, our notion of pessimism is
exactly the decision criterion that corresponds to the limiting point of players becoming infinitely
risk averse. Thus, the discontinuity revealed by our analysis can be seen again as a manifestation
that Börgers Dominance is fundamentally related—as already pointed out above—to the standard
Bayesian framework we shy away from in this paper.

1.2 Related Literature

This paper fits various streams of literature. On one side, it belongs to those works that focus on
games where only ordinal preferences are assumed to be transparent between players: As such,
it is related to Börgers (1993) and Bonanno & Tsakas (2018). In using the tools of epistemic
game theory in starting from explicitly defined assumptions concerning the players, it is related
to the literature on the topic—broadly—as in Dekel & Siniscalchi (2015) and—more precisely—to
Mariotti (2003) and Mariotti et al. (2005). It is related to the two latter works also in how beliefs
are coarsely represented as subset of actions (profiles). As a matter of fact, with respect to this
point, it is also related to Chen & Micali (2015). Finally, regarding the fact that here we investigate
players’ attitudes different from the rationality benchmark, it is related to Yildiz (2007) and to
Weinstein (2016), where the relation with the latter arises in the way in which these attitudes are
identified as polar opposites. In Section 5, we address in a more detailed way the relation between
our work an the contributions mentioned. Finally, Eichberger & Kelsey (2014) study optimism
and pessimism in games, but do so in a setting of ambiguity and equilibrium. Therefore, their
contribution is distinct, but complementary, to our approach.

1.3 Synopsis

The paper is structured as follows. In Section 2, we introduce the class of games we study and the
epistemic structures appropriate for our analysis, along with our events of interest. In Section 3,
we define the solution concepts that algorithmically characterize the events which are the focus
of our analysis. In Section 4, we relate our work to the notion of Börgers dominance. Finally, in
Section 5, we discuss further various aspects of our work and how our results relate to the existing
literature. All the proofs of the results established in the paper are relegated to Appendix A.

2. Epistemic Apparatus

The primitive objects of our analysis are finite ordinal games. In particular, a finite ordinal game
(henceforth, game) is a tuple

Γ := 〈I, (Ai, ui)i∈I〉

where, for every i ∈ I, Ai is player i’s finite set of actions, with A−i :=
∏
j∈I\{i}Aj and A :=∏

j∈I Aj , and ui : A→ < is her ordinal utility function (unique up to monotone transformation).
We deem a game generic if, for every i ∈ I and ai, a

′
i ∈ Ai, the fact that ai 6= a′i implies that

ui(ai, a−i) 6= ui(a
′
i, a−i), for every a−i ∈ A−i.

In what follows, every topological space is assumed to be compact Hausdorff, where in the case of
finite spaces this is a consequence of endowing them—as we do—with the discrete topology. Thus,
given an arbitrary space X, we let K (X) denote the family of all its compact subsets endowed with
the Hausdorff topology,10 which makes it compact Hausdorff, whenever X is compact Hausdorff.

Definition 2.1 (Epistemic Possibility Structure). Given a game Γ := 〈I, (Ai, ui)i∈I〉, an
epistemic possibility structure (henceforth, possibility structure) appended on Γ is a tuple

P := 〈I, (A−i, Ti, πi)i∈I〉

where, for every i ∈ I, Ti is her compact Hausdorff set of epistemic types (henceforth, types) and
πi : Ti → K (A−i × T−i) is her continuous possibility function.

10Recall that the Hausdorff topology is the topology generated by all subsets of the form { κ ∈ K (X) | κ ⊆ G }
and { κ ∈ K (X) | κ ∩G 6= ∅ } with G open in X.
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To ease the reading, we introduce the function ϕi : Ti → K (A−i), which captures what an
arbitrary player i considers possible regarding only the actions eventually chosen by the remaining
players, i.e., her first order beliefs. For every i ∈ I, we let Ωi := Ai × Ti, with Ω :=

∏
j∈I Ωj . It is

understood that every E ∈ K (Ω) is such that E :=
∏
j∈I Ej with Ej ∈ K (Ωj), for every j ∈ I.

Remark 2.1 (Belief-Completeness). For every game Γ, there exists a possibility structure
P∗ := 〈I, (A−i, T ∗i , πi)i∈I〉 appended on it that is belief-complete, i.e., πi is surjective, for every
i ∈ I (see Mariotti et al. (2005, Section 3)).

Given a possibility structure P with state space Ω, interactive reasoning is captured by means
of opportune modal operators acting on Ω. In particular, the belief operator Bi of player i is defined
as

Bi(E−i) :=
{ (
ai, ti

)
∈ Ai × Ti

∣∣ πi(ti) ⊆ E−i } ,
for every E−i ∈ K (Ω−i), with B(E) :=

∏
i∈I Bi(E−i), whereas the correct belief operator is defined

as
CB(E) := E ∩ B(E).

In the rest of the paper we make repeated use of iterative applications of the operator B, which
work according to the following rules on an arbitrary event E ∈ K (Ω):

• (n = 0) B0(E) := E,

• (n ≥ 1) Bn(E) := B(Bn−1(E)).

The basic events we want to formalize in a possibility structure are those that capture a player
being either pessimistic or optimistic. Thus, we let

Oi :=

{
(a∗i , ti) ∈ Ai × Ti

∣∣∣∣ a∗i ∈ arg max
ai∈Ai

max
ã−i∈ϕi(ti)

ui(ai, ã−i)

}
(2.1)

be the event in Ωi that captures player i being optimistic. On the contrary, we let

Pi :=

{
(a∗i , ti) ∈ Ai × Ti

∣∣∣∣ a∗i ∈ arg max
ai∈Ai

min
ã−i∈ϕi(ti)

ui(ai, ã−i)

}
(2.2)

be the set of states of the world where player i is pessimistic. It is the reliance on the max and
min operators of these decision criteria that lead us to deem our players tropical, since in tropical
algebra the usual addition is replaced with the max or min operators.11 As a result, much in the
same spirit in which expected utility is a (weighted) sum of the underlying utilities of outcomes in
a standard Bayesian framework, for tropical players our decision criteria involve ‘sums’ again.

Example 1 (Leading Example). Consider the game represented in Figure 1 with two players,
namely, Ann (viz., a) and Bob (viz., b).

a

b
L C R

T 2, 3 3, 2 1, 1
M 4, 3 1, 1 4, 0
D 2, 0 2, 2 1, 1

Figure 1: A 3× 3 game.
11Formally, a monoid is an algebraic structure 〈M,�〉, where � is a binary operation defined over a set M which

is associative, i.e., for every a, b, c ∈ M , (a�b)�c = a�(b�c), with identity element i ∈ M , i.e., for every a ∈ M ,
a�i = i�a = a. A monoid is commutative if the binary operation is also commutative. Given that <− := <∪{−∞},
a max tropical semiring is a tuple 〈<−,�,�〉, where:

• for every x, y ∈ <−, x � y := max{x, y} and x� y := x+ y,

• 〈<−,�〉 is a commutative monoid with identity element −∞,

• 〈<−,�〉 is a commutative monoid with identity element 0.

Similarly, one can define a min tropical semiring 〈<+
,⊕,�〉 related to our definition of pessimism, with <+

:=
< ∪ {+∞} and x⊕ y := min{x, y}.
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To see the events we have introduced at work, we append on it a possibility structure. In particular,
we focus on Ann, with Ta := {ta, t′a, t′′a} and

ϕa(ta) := {L},
ϕa(t′a) := {C},
ϕa(t′′a) := Ab.

Then it is straightforward to observe that

Oa := {(M, ta), (T, t′a), (M, t′′a)},
Pa := {(M, ta), (T, t′a), (T, t′′a), (M, t′′a), (D, t′′a)}.

Crucially, the difference between Ann’s attitude arises when she contemplates the idea that Bob
can play more than one action, i.e., when her type is t′′a. If she is optimistic, she is going to expect
Bob to play L or C, because both those actions can give her the highest utility, thus she is going
to play M (indeed, in both cases she can get 4); if she is pessimistic, she is indifferent between T ,
M , and D, since 1 is the lowest possible payoff she could get given L, C, or R. �

Having defined what it means for a player to be either optimistic or pessimistic by opportune
events in Ωi, the natural next step is to investigate the implications of having players involved in
a game interactively reason about each others. As a result we focus our analysis on the following
events:

CBm(O) := O ∩
m−1⋂
k≥0

B(CBk(O)),

CBm(P) := P ∩
m−1⋂
k≥0

B(CBk(P)).

The role in the rest of the analysis of the events concerning common correct belief is such that
they deserve their own definition.

Definition 2.2 (Optimism/Pessimism and Common Correct Belief in Optimism/Pessimism).
Given a game Γ and a possibility structure P with state space Ω, the epistemic condition Optimism
and Common Correct Belief in Optimism (henceforth, OCBO) is captured by the event

OCBO := CB∞(O) =
⋂
`≥0

CB`(O) = O ∩
⋂
`≥0

B(CB`(O)),

while
PCBP := CB∞(P) =

⋂
`≥0

CB`(P) = P ∩
⋂
`≥0

B(CB`(P))

is the event that captures the condition Pessimism and Common Correct Belief in Pessimism (hence-
forth, PCBP).

Having established our events of interest, a crucial step whenever involved in an epistemic
analysis is to establish that those events are actually epistemic ‘events’ for the players. That is,
we just defined OCBO and PCBP, but are those events part of the language of the players? This
is a crucial problem, since we want our players to reason about these very events. This is exactly
what we achieve next.

Proposition 1. For every n ∈ N, CBn(O) ∈ K (Ω) and CBn(P) ∈ K (Ω).

The reason why Proposition 1 is enough to establish this point is that, rather informally, given
our topological assumptions result amounts to stating that the relevant sets are events in the
measurable sense of the term.12

12See Appendix A.1 for a formalization of this point along with the proof of the result.
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3. Algorithmic Procedures

Having established in the previous section the epistemic framework that we append on an ordinal
game, it is natural to ask ourselves if we can algorithmically characterize our events of interest,
with a particular attention to those defined in Definition 2.2. In the following two subsections, this
is exactly what we achieve, where we let proj denote the (continuous) projection operator applied
on product spaces as canonically defined.

3.1 The Optimistic Player

We want to formalize a notion of best-reply that captures the max max decision criterion (in
presence of coarse beliefs) that lies behind our notion of optimism. Thus, given a game Γ, a player
i ∈ I, and a κi ∈ K (A−i), we let

ρmax
i (κi) :=

{
a∗i ∈ Ai

∣∣∣∣ a∗i ∈ arg max
ai∈Ai

max
ã−i∈κi

ui(ai, ã−i)

}
(3.1)

denote the set of optimistic best-replies to belief κi ∈ K (A−i).
Building on the notion of optimistic best-replies, we can now define a solution concept which

is essentially a formulation based on our language of Point Rationalizability, as introduced in
Bernheim (1984, Section 3(b)).

Definition 3.1 (Point Rationalizability). Fix a game Γ := 〈I, (Ai, ui)i∈I〉 and consider the
following procedure, for every i ∈ I and m ∈ N:

• (Step m = 0) P0
i := Ai;

• (Step m > 0) Assume that Pm := Pmi ×Pm−i has been defined and let

Pm+1
i :=

 a∗i ∈ Pmi

∣∣∣∣∣∣
∃κi ∈ K (A−i) ∃a∗−i ∈ Pm−i :
1. κi = {a∗−i},
2. a∗i ∈ ρmax

i (κi)

 . (3.2)

Then, for every n ∈ N, we let Pni denote the set of strategies of player i that survive the n-th
iteration of the Point Rationalizability procedure. Finally,

P∞i :=
⋂
`≥0

P`i

is the set of strategies of player i that survive the Point Rationalizability procedure, with P∞ :=∏
j∈I P

∞
j denoting the set of point rationalizable strategy profiles.

Before seeing Point Rationalizability at work, it is important to recall that its nonemptiness
has been established in Bernheim (1984, Proposition 3.1). Thus, we now go back to our leading
example to see what are the behavioral predictions we obtain there via Point Rationalizability.

Example 1 (Leading Example, Continued). To see Definition 3.1 at work, we consider the
game in Figure 1. Thus, we have that P1

a = {T,M} and P1
b = {L,C}. Then we have that P2

a = P1
a

and P2
b = {L}. As a result, P3

a = {M} = P∞a and P2
b = {L} = P∞b . �

We can now tackle the problem of the algorithmic characterization of Optimism and Common
Belief in Optimism. As a matter of fact, the result that we state next settles the issue.

Theorem 2 (Tropical Foundation of Point Rationalizability). Fix a game Γ.

i) If P is an arbitrary possibility structure appended on it, then

projA CBn(O) ⊆ Pn+1, (3.3)

for every n ∈ N, and
projAOCBO ⊆ P∞. (3.4)
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ii) If P∗ is a belief-complete possibility structure appended on it, then

projA CBn(O) = Pn+1, (3.5)

for every m ∈ N, and
projAOCBO = P∞. (3.6)

3.2 The Pessimistic Player

We now formalize a notion of best-reply that captures the max min decision criterion (in presence
of coarse beliefs) that lies behind our notion of pessimism, in the same spirit of what we did in the
previous section. Thus, given a game Γ, a player i ∈ I, and a κi ∈ K (A−i), we let

ρmin
i (κi) :=

{
a∗i ∈ Ai

∣∣∣∣ a∗i ∈ arg max
ai∈Ai

min
ã−i∈κi

ui(ai, ã−i)

}
(3.7)

denote the set of pessimistic best-replies to belief κi ∈ K (A−i).
We can now introduce our algorithmic procedure that capture interactive pessimism in static

games, that we deem Wald Rationalizability in honor of Abraham Wald’s celebrated decision
criterion in Wald (1950).

Definition 3.2 (Wald Rationalizability). Fix a game Γ := 〈I, (Ai, ui)i∈I〉 and consider the
following procedure, for every i ∈ I and m ∈ N:

• (Step m = 0) W0
i := Ai;

• (Step m > 0) Assume that Wm := Wm
i ×Wm

−i has been defined and let

Wm+1
i :=

 a∗i ∈Wm
i

∣∣∣∣∣∣
∃κi ∈ K (A−i) ∃Â−i ⊆Wm

−i :

1. κi = Â−i,
2. a∗i ∈ ρmin

i (κi)

 . (3.8)

Then, for every n ∈ N, we let Wn
i denote the set of strategies of player i that survive the n-th

iteration of the Wald Rationalizability procedure. Finally,

W∞
i :=

⋂
`≥0

W`
i

is the set of strategies of player i that survive the Wald Rationalizability procedure, with W∞ :=∏
j∈I W

∞
j denoting the set of Wald rationalizable strategy profiles.

Mirroring the structure of Section 3.1, we establish a crucial property of Wald Rationalizability.

Remark 3.1 (Nonemptiness). For every game Γ, W∞ 6= ∅.

Again, we go back to our leading example to see how Wald Rationalizability performs there.

Example 1 (Leading Example, Continued). To see Definition 3.1 at work, we consider again
the game in Figure 1. Thus, we have that W1

a = Aa and W1
b = {L,C}. As a matter of fact, the

algorithm stops here. Thus, we have that W∞
a = Aa and W∞

b = {L,C}. �

As we did for Optimism and Common Belief in Optimism, we now solve the issue of providing
an algorithmic characterization for Pessimism and Common Belief in Pessimism.

Theorem 3 (Tropical Foundation of Wald Rationalizability). Fix a game Γ.

i) If P is an arbitrary possibility structure appended on it, then

projA CBn(P) ⊆Wn+1, (3.9)

for every n ∈ N, and
projA PCBP ⊆W∞. (3.10)
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ii) If P∗ is a belief-complete possibility structure, then

projA CBn(P) = Wn+1, (3.11)

for every n ∈ N, and
projA PCBP = W∞. (3.12)

3.3 Relation between the Algorithms

Having formalized procedures that we show algorithmically characterize our epistemic events of
interests, it is natural to investigate what is the relation between the two solutions concepts just
introduced. Our Example 1 already show that W∞ 6⊆ P∞. Thus, can we say that P∞ is a
refinement of W∞? On intuitive grounds, this should be the case and the result that follows
establishes exactly this point.

Proposition 4. Given a game Γ, Pn ⊆Wn, for every n ∈ N.

The proof is equally intuitive: if a strategy is an optimistic best-reply, then it a pure best-reply
to the player’s favorite opponent’s action, but then it also a pessimistic best-reply to the singleton
belief considering only this opponent’s strategy as possible. In other words, for singleton beliefs
the two notions coincide and for the optimistic case it is without loss to consider such singleton
beliefs.13 Conversely, a pessimistic best-reply might need a non-singleton belief. Therefore, there
are occasions in which the inclusion is strict.

4. Relation to Börgers Dominance

We now compare the behavior of Point Rationalizabilty and Wald Rationalizabilty to a form
of Rationalizability built upon the notion of Börgers Dominance, introduced in Börgers (1993).
Hence, in what follows, we formalize this latter notion.

Given a game Γ, a player i ∈ I, and a subset Ãi × Ã−i ⊆ Ai × A−i, action ai ∈ Ãi is weakly
dominated relative to Ã−i for player i by action a∗i ∈ Ãi if ui(a∗i , a−i) ≥ ui(ai, a−i) for every
a−i ∈ Ã−i and there exists an action a∗−i ∈ Ã−i such that ui(a∗i , a∗−i) > ui(ai, a

∗
−i). Thus, given a

subset Ãi × Ã−i ⊆ Ai ×A−i, action a∗i ∈ Ãi is admissible if it is not weakly dominated relative to
Ã−i, where we let Ai(Ãi × Ã−i) denote the set of actions of player i that are admissible relative
to Ãi × Ã−i. Thus, an action ai ∈ Ãi is Börgers dominated with respect to Ã−i if there exists a
subset Ã∗−i ⊆ Ã−i such that ai /∈ Ai(Ãi × Ã∗−i).

Armed with this definition, we want to formalize in our language based on ‘coarse’ beliefs a
notion of Rationalizability based on this dominance notion. To achieve this result, given a game
Γ, a player i ∈ I, and a belief κi ∈ K (A−i), we let

ρBi (κi) := Ai(Ai × κi) (4.1)

denote the set of Börgers best-replies to belief κi ∈ K (A−i).
Much in the same spirit of the procedures we defined in the previous sections, this is really

everything we need to formalize in our language Börgers Rationalizabilty, stated next.

Definition 4.1 (Börgers Rationalizabilty). Fix a game Γ := 〈I, (Ai, ui)i∈I〉 and consider the
following procedure, for every i ∈ I and k ∈ N:

• (Step m = 0) B0
i := Ai;

• (Step m > 0) Assume that Bm := Bm
i ×Bm

−i has been defined and let

Bm+1
i :=

{
a∗i ∈ Bm

i

∣∣ ∃κi ∈ K (A−i) : κi ⊆ Bm
−i, a

∗
i ∈ ρBi (κi)

}
. (4.2)

13We elaborate on this in Section 5.2.
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Then, for every n ∈ N, we let Bn
i denote the set of strategies of player i that survive the n-th

iteration of Börgers Rationalizabilty. Finally,

B∞i :=
⋂
`≥0

B`
i

is the set of strategies of player i that survive Börgers Rationalizabilty, with B∞ :=
∏
j∈I B

∞
j

denoting the set of strategy profiles surviving Börgers Rationalizabilty.

Thus, it has to be observed that Börgers undomination as defined above is clearly not captured
in Equation (4.1), but rather in Equation (4.2), where the necessary union across all subsets of the
κi ∈ K (A−i) under scrutiny is taken.

Since the nonemptiness of Börgers Rationalizabilty is immediate, we can proceed by provid-
ing an epistemic foundation to this algorithmic procedure in our epistemic framework based on
possibility structures. To do this, we follow Bonanno & Tsakas (2018) and we let

Ai := { (a∗i , ti) ∈ Ai × Ti | a∗i ∈ Ai(Ai × ϕi(ti)) } . (4.3)

denote the event that captures those states in Ωi where player i does choose an admissible action
given her beliefs (as captured via types). Thus, it has to be observed at this stage that, in contrast
to Oi and Pi, the event Ai is not defined as an optimal choice for a decision criterion, but rather
directly based on a domination notion. That is, whereas our notions of optimism and pessimism
are based on classic decision criteria under ignorance, admissibility is fundamentally a notion of
(un)dominance.

With the event Ai at our disposal, and similar to above, all (common belief) events about
admissibility are measurable.

Proposition 5. For every n ∈ N, CBn(A) ∈ K (Ω).

Now, it is straightforward to proceed with an epistemic foundation of Börgers Rationalizabilty,
as we do next.

Theorem 6 (Foundation of Börgers Rationalizability). Fix a game Γ.

i) If P is an arbitrary possibility structure appended on it, then

projA CBn(A) ⊆ Bn+1,

for every n ∈ N, and
projA ACBA ⊆ B∞.

ii) If P∗ is a belief-complete possibility structure appended on it, then

projA CBn(A) = Bn+1,

for every m ∈ N, and
projA ACBA = B∞.

Our characterization can be seen as taking the perspective of the players. Within a different
framework, Bonanno & Tsakas (2018, Theorem 1) state a seemingly similar result, but provide a
different proof. The difference can be interpreted as their analysis taking the perspective of an
(outside) analyst. Therefore, we see Theorem 6 as complementary to Bonanno & Tsakas (2018,
Theorem 1).14

As the result that follows accomplishes, it is rather easy to show that there exists an immediate
relation between Point Rationalizability and Börgers Rationalizabilty. Like in Proposition 4, the
argument follows from the coincidence of the two best-replies for singleton beliefs.

14See Friedenberg & Keisler (Forthcoming, Sections 2.2–2.4) for a thorough discussion of these two interpretations.
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Proposition 7. Given a game Γ, Pn ⊆ Bn, for every n ∈ N.

However, as the two examples that follow show, it is not possible to establish an inclusion
relation between Börgers Rationalizabilty and Wald Rationalizabilty.

Example 1 (Leading Example (W∞ 6⊆ B∞), Continued). Consider again the game depicted
in Figure 1, where the only payoffs represented are those of Ann. It is easy to observe that D /∈ B1

a.
Indeed, for every singleton {ab} ∈ Ab, there exists an action in Aa that strictly dominates D (e.g.,
T strictly dominates D with respect to C; also, T weakly dominates D with respect to {L,C}
and {C,R}); M strictly dominates D with respect to {L,R}; finally, T strictly dominates D with
respect to Ab. However, as we already observed, W1

a = Aa, since Aa = arg maxaa∈Aa
ρmin
a (κa) for

κa = Ab. �

Example 2 (B∞ 6⊆W∞). Consider the following game, with two players, namely, Ann (viz., a)
and Bob (viz., b), where only Ann’s payoffs are represented.

a

b
L R

T 6 1
M 5 2
D 4 3

Figure 2: A game showing that B∞ 6⊆W∞.

It is easy to observe that B1
a = Aa. However, M /∈ W1

a. Indeed, T ∈ ρmin
a (κa) with κa = {L},

while D ∈ ρmin
a (κ′a) with κ′a = {R} or κ′a = {L,R}. �

However, if the game is generic, things change and Börgers rationalizable actions result in being
a superset of the Wald rationalizable ones, as the next proposition shows.

Proposition 8. Given a generic game Γ, Wn ⊆ Bn, for every n ∈ N.

5. Discussion

5.1 On the Interpretation of the word “Ignorance”

In contemporary philosophy, the notion of ignorance is declined in various ways. For example, it
is possible to identify the following forms of ignorance: factual ignorance, that arises whenever
there is lack of knowledge of some fact; object ignorance, related to lack of knowledge of an object;
technical ignorance, which manifests itself whenever there is lack of knowledge of how to perform
something.15

In Section 1.1, we implicitly interpreted the notion of ignorance along the lines of the original
contributors to the topic in the economic literature. Thus, our original narrative covers the first
two forms of ignorance described above: indeed, a player who is unable to provide a belief via a
probability measure (or similia) can support this either in terms of lack of knowledge of some facts
(e.g., facts concerning her opponents which preclude her to form beliefs in a measure-thereotic
way), or via lack of her knowledge of her own belief (as a probability measure—or similia).16

However, it is also possible to interpret the notion of ignorance as technical ignorance: that is,
a player can be (technically) ignorant in the sense that, even if she is actually able to describe her
belief via some form of probability measure (or similia), she is going to find herself unable to make
the appropriate related computations (i.e., her expected utility). We feel this interpretation to be
not at all farfetched, in particular when players happen to be undergraduate students in the role

15See Nottelmann (2017).
16This is related to the the problem of belief elicitation. See, for example, Schotter & Trevino (2014, Section 3),

where it is written that—without belief elicitation—people could proceed in a game without trying to predict their
opponents’ behavior or might use various forms of heuristics not based on beliefs (understood as represented via
probability measures).
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of subjects of an experiment based on a static game. Thus, when we embrace this interpretation
of the word “ignorance”, our results can be seen as an analysis of rules-of-thumbs used by players
in static games that lack the mathematical skills to perform expected utility computations, but
that—nonetheless—are perfectly capable of performing strategic interactive reasoning.

5.2 Relation to Mariotti (2003)

Mariotti (2003) epistemically characterizes Point Rationalizability using possibility structures, like
in this contribution. However, in contrast to our approach, he focuses on players that choose
best-replies to pure actions of the opponents without explicitly modeling—as we do—how a player
chooses an action when her type considers possible multiple actions of the opponents.

To see the difference, consider a game Γ with an appended possibility structure P and a player
i ∈ I. Mariotti (2003) defines an action a∗i ∈ Ai to be justifiable if a∗i ∈ arg maxai∈Ai ui(ai, ã−i),
given a ã−i ∈ A−i. Thus, action a∗i ∈ Ai is justifiable if the set

Mi(a
∗
i ) :=

{
ã−i ∈ A−i

∣∣∣∣ a∗i ∈ arg max
ai∈Ai

ui(ai, ã−i)

}
is nonempty. With this definition about behavior, he proceeds by defining an epistemic event that
relates the choice of player i’s justifiable actions to player i’ types (and related possibility functions)
as

Mi := { (a∗i , ti) ∈ Ai × Ti |Mi(a
∗
i ) 6= ∅, ϕi(ti) ⊆Mi(a

∗
i ) } .

Contrary to our approach based on the notion of optimism, Mi not only restricts player i’s behavior,
but also her epistemic state. Intuitively, Mi can be interpreted as capturing two assumptions at
once:

i) player i chooses an action which is a best-reply to all opponents’ actions she deems possible;

ii) player i’s possibilities are restricted in such a way that an optimal-for-all action exists.17

Our approach, on the contrary, distinguishes assumptions about behavior and epistemic attitudes.
Indeed, Oi is only a restriction on how player i chooses an action, since in our model every type
has an ‘optimistic’ action available and no types need to be ruled out to ensure existence.

Taken into account the discussion above, it has to be observed that the behavioral implications
of both events Mi and Oi are—of course—the same: considering only types with singleton ϕi(ti)
does not change the behavioral implications of either event, but under this restriction optimistic
choices are clearly justifiable and vice versa. However, it has to be pointed out that the goals of the
two papers are different: the explicit goal of Mariotti (2003) is to epistemically characterize Point
Rationalizability via possibility structures, while our aim, rather than to provide a foundation for
Point Rationalizability per se, is to study the behavioral implications of—optimism and common
belief in—optimism (and the same for pessimism) starting with an explicit formalization of these
notions.

Nevertheless, we can provide a more direct epistemic foundation for Point Rationalizability as
follows. First of all, we define the event in a possibility structure that an arbitrary player i ∈ I
has point beliefs:18

Di :=
{

(ai, ti) ∈ Ai × Ti
∣∣ ∃(a∗−i, t∗−i) ∈ A−i × T−i : πi(ti) = {(a∗−i, t∗−i)}

}
.

With this definition, the promised foundation—stated next—obtains as a corollary of Theorem 2.19

Corollary 9 (Direct Foundation of Point Rationalizability). Fix a game Γ.
17Formally, this would correspond to a model of decision making with incomplete preferences due to multiple point

beliefs. Ziegler & Zuazo-Garin (2020) use a similar model in the realm of multiple beliefs to provide a foundation
for iterated admissibility.

18That is, πi(ti) being a singleton set. Within a Bayesian framework the same can be accomplished by imposing
degenerate distributions as allowable beliefs.

19Corollary 9(ii) can be established under the weaker condition of an appropriately defined degenerately belief-
complete possibility structure similar to Friedenberg (2019, Section 8).
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i) If P is an arbitrary possibility structure appended on it, then

projA CBn(O ∩ D) ⊆ Pn+1,

for every n ∈ N, and
projA CB∞(O ∩ D) ⊆ P∞,

ii) If P∗ is a belief-complete possibility structure, then

projA CBn(O ∩ D) = Pn+1,

for every n ∈ N, and
projA CB∞(O ∩ D) = P∞.

5.3 Relation to Yildiz (2007)

Yildiz (2007) proposes a model of wishful thinking in strategic environments, to which our notion
of optimism shares its behavioral attitude along with its mathematical formalization as in Equa-
tion (2.1). However, there are some crucial differences between our approach and that of Yildiz
(2007). Most obviously, the algorithm in Yildiz (2007, Section 3) differs from Point Rationalizabil-
ity, since the former deletes actions profiles, while the latter actions. Furthermore, Yildiz (2007,
Example 5) illustrates an existence failure of his model, whereas Point Rationalizability is always
nonempty. As a result, the behavioral implications of Optimism and Common Belief in Optimism
differ from those of Wishful Thinking and Common Knowledge in Wishful Thinking. We show
this point in the example that comes next.

Example 3 (Battle of the Sexes). To see the difference, consider the leading example of Yildiz
(2007), which happens to be the Battle of the Sexes.

a

b
L R

T 2, 1 0, 0
D 0, 0 1, 2

Figure 3: Battle of the Sexes.

Clearly, P∞ = Aa ×Ab. However, the algorithm in Yildiz (2007) deletes the action profile (T,D).
Indeed, as pointed out in Yildiz (2007, Section 1, p.321), it is not possible for Ann to indulge in
wishful thinking, play D, and know that Bob plays L. �

Given this example and the fact that the baseline assumptions about players’ behavior are vir-
tually the same, it is natural to ask ourselves why this difference arises with respect to behavioral
predictions.20 First of all, it has to be observed that it is true that, where we use possibility struc-
tures, Yildiz (2007) uses Aumann structures. However this does not have immediate theoretical
implications for our exercise.21 As a matter of fact, the crucial issue lies in the modal operators
employed: we use the belief operator, while Yildiz (2007) uses the knowledge operator. It is well-
known that knowledge differs from belief in that knowledge satisfies the Truth Axiom, which states
that whatever is known must be true.22 Since belief does not satisfy this axiom, a player in our
model might believe an event that is actually wrong.23 This difference is critical for the dichotomy

20There are some other minor differences which do not play a crucial role formally, but are interesting from a
conceptual perspective. For example, Yildiz (2007) assumes that players have beliefs in the form of a probability
measure and that players’ risk preferences are transparent between them. As pointed out in Section 1.1, the
motivation behind our work is exactly to avoid these two assumptions.

21Of course, there are differences between the two settings, both mathematical (e.g., the set of states of the world
in a possibility structure has a product structure, whereas in Aumann structures it does not) and conceptual (e.g.,
in Aumann structures every state of the world is inextricably linked to an infinite hierarchies of beliefs of a player,
which is in itself linked to a specific action of that player). However, as written in the main body, these differences
do not have implications for our analysis.

22See for example Osborne & Rubinstein (1994, Section 5.1.2, p.70).
23Samet (2013, Section 3.2) provides a detailed discussion of the differences within the similar framework of belief

structures.
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optimism/wishful thinking and illustrates the discrepancies in the behavioral implications for the
Battle of the Sexes.

Example 3 (Battle of the Sexes, Continued). Consider again the game depicted in Figure 3.
We append a possibility structure to it with Ta := {ta, t′a}, Tb := {tb, t′b}, and

πa(ta) = {(L, tb), (R, t′b)}, πa(t′a) = {(R, t′b)},
πb(tb) = {(T, ta)}, and πb(t

′
b) = {(T, ta), (D, t′a)}.

Within this possibility structure, we have Oa = {(T, ta), (D, t′a)} and Ob = {(L, tb), (R, t′b)}. Be-
cause these states are the only ones which are considered possible by the players there is optimism
and common belief in optimism. In particular, note that the behavioral implications correspond to
P∞ = Aa×Ab. Now, let us have a close look at the state

(
(D, t′a), (L, tb)

)
∈ OCBO. At this state,

since ϕa(t′a) = {(R, t′b)}, Ann clearly holds a wrong belief. Therefore, Ann cannot know {(R, t′b)}
at this state as this would violate the Truth Axiom. Thus, any event she knows at this state has
to be a strict superset of {(R, t′b)} and—in particular—has to include Bob’s action L. Wishful
thinking in Yildiz (2007) is defined with respect to knowledge. Therefore, at this state she cannot
choose D as a wishful thinker à la Yildiz (2007). This argument generalizes leading to a removal
according to the algorithm in Yildiz (2007). �

Related to the differences we identify in the procedures, it has to be pointed out that Bonanno
& Tsakas (2018) show how Admissibility (as in Equation (4.3)—of course, in their language and
terminology, where it is called “Weak Dominance Rationality”) and Common Belief vs. Common
Knowledge in Admissibility are algorithmically characterized by two different procedures. Bonanno
& Tsakas (2018, Theorem 1) (similiar to our Theorem 6) shows that Admissibility and Common
Belief in Admissibility is algorithmically characterized by the iterative elimination of actions that
are Börgers dominated, indeed a procedure based on the elimination of actions. Interestingly,
and clearly related to the differences between Point Rationalizabiilty and the procedure in Yildiz
(2007), Admissibility and Common Knowledge in Admissibility is algorithmically characterized
by an elimination of action profiles known as Iterated Deletion of Inferior Profiles, introduced in
Stalnaker (1994, Section 3, p.62).

5.4 Rationality in Ordinal Games

As we mentioned at the end of Section 1.1, there is no agreement on what is the ‘right’ notion of
rationality for players in ordinal games that do not hold beliefs in the form of probability measures
(or similia). This can be seen from the fact that two different notions are perfectly acceptable,
each leading to different behavioral predictions when we impose them along with common belief
in them.

On one side, there is the notion of rationality as in Equation (4.3), that we call Admissibility.
This notion goes back to Hillas & Samet (2014, Definition 5) and it is called “Weak Dominance Ra-
tionality” in Bonanno & Tsakas (2018, Definition 2). As we already mentioned in various instances,
Bonanno & Tsakas (2018, Theorem 1) shows that Weak Dominance Rationality and Common Be-
lief in Weak Dominance Rationality epistemically characterizes the iterative elimination of actions
that are Börgers dominated.

On the other side, it is possible to provide a different notion of rationality as in Bonanno (2015,
Definition 3), call it S-rationality, according to which an action a∗i of a player i is S-rational at
a state if it is not the case that there exists another action ai that yields a strictly higher payoff
than a∗i against all the action profiles of the other players that player i considers possible at that
state. If we focus on this notion of rationality, then Bonanno (2015, Proposition 1) establishes that
S-Rationality and Common Belief in S-Rationality is algorithmically characterized by the iterative
elimination of actions that are strictly dominated by pure actions.

Thus, going back to the seemingly puzzling Proposition 8, this result can be partly24 explained
in light of the fact that, while we have a clear notion of optimism and pessimism (which is exactly
what we set forth in this paper), the notion of rationality is more elusive. Thus, there is no puzzle

24For the remaining part of the explanation, see Section 5.5.
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in having actions that are compatible with Pessimism and Common Belief in Pessimism being a
subset of those that are compatible with Admissibility and Common Belief in Admissibility.

5.5 Relation to Weinstein (2016) and Rationalizability

The notions of optimism and pessimism could be seen as decision criteria under extreme risk-seeking
and risk-aversion, respectively. Among other things, Weinstein (2016) studies the prediction of the
standard Rationalizability algorithm (as in Osborne & Rubinstein (1994, Definition 54.1, Chapter
4.1)—henceforth, Rationlizability) when players’ risk attitudes varies. In particular, he charac-
terizes the limits of the algorithm if risk attitudes tend to either extremes: while in the limiting
case of extreme risk-seeking behavior Rationalizability converges to Point Rationalizability, Ra-
tionalizability converges to Börgers Rationalizability in the limiting case of extreme risk-seeking
behavior. Now, it has to be pointed out that our Optimism/Pessimism and Common Belief in
Optimism/Pessimism can be seen as the limit points of the convergence process described above.
That is, focusing on the most intresting case, Pessimism and Common Belief in Pessimism can be
interpreted as extreme risk-aversion as commonly believed among players. Thus, to clarify why
Proposition 8 is not puzzling afterall, this result simply shows—as anticipated in Section 1.1—that
there is the presence of a discontinuity.

In light of this observation, an analysis of the relation between Wald Rationalizability and
Rationalizability might be of interest for applications. However, it has to be pointed out that
Rationalizability crucially relies on beliefs in the usual sense of probability measures or on strict
dominance by possibly mixed actions (from Pearce (1984, Lemma 3)), i.e., it requires at least one
of the two assumptions we want to avoid in our analysis. Hence, it is conceptually inappropriate to
compare our algorithms to Rationalizability. Nonetheless, given this caveat, we proceed with such
comparison by mechanically treating ui as representing cardinal utilities, exactly for the potential
applications that could arise. Thus, we let R∞ denote the set of rationalizable actions and R1

i the
collection of payer i’s actions surviving the first iteration of the Rationalizability algorithm. Now,
recall that Weinstein (2016, Proposition 3) establishes that R∞ ⊆ B∞. Therefore, the discussion
in Section 4 does not provide further guidance on the relationship with W∞ for nongeneric games.
As a matter of fact, there is no relationship even for generic games as the next two examples show.

Example 2 (R∞ 6⊆ W∞, Continued). In the generic game of Figure 2, it easy to see that
R1
a = B1

a = Aa, but M /∈W1
a as argued before. �

Example 4 (W∞ 6⊆ R∞). Consider the following game, with two players, namely, Ann (viz., a)
and Bob (viz., b), where only Ann’s payoffs are represented.

a

b
L R

T 3 0
M 1 1
D 0 3

Figure 4: A generic game showing that W∞ 6⊆ R∞.

Here,M is the only strategy of Ann which is strictly dominated (by a mixture of T and D). Hence,
M /∈ R1

a. However, M ∈W1
a, because M ∈ ρmin

a (κa) with κa = {L,R}. �

Example 2 might suggest a failure of upper hemicontinuity of the Rationalizability correspon-
dence taking the limit to extreme risk aversion. After all the limiting25 game is one in which players
have Pessimism and Common Belief in Pessimism. Along the sequence it is always the case that
M is rationalizable, but M /∈W1

a. This is, however, not the case for the same reason identified by
Weinstein (2016, p.1892).26 In particular, Rationalizability fails lower hemicontinuity as well.

25See Weinstein (2016, Section 2) for the technical details.
26Observe that, although his argument is made for Nash equilibrium, it applies to the Rationalizability correspon-

dence as well.
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Example 1 (Limit Game, Continued). Consider the limiting game of extreme risk aversion.
We take the game in Figure 1 and—focusing on Bob—we represent in Figure 5 Bob’s payoffs after
normalizing them so that they have range [0, 1].

a

b
L C R

T 1 1 1
M 1 1 0
D 0 1 1

Figure 5: Extreme risk-aversion payoffs for Bob after normalization.

In this limiting game, we have W1
b = Ab and, in particular, R ∈W1

b . However, along the sequence
R will be always strictly dominated by C and therefore R cannot be an element of the limit of the
upper-hemicontinuous Rationalizability correspondence.27 �

5.6 Applications to Mechansim Design

Much of the original work in implementation theory has focused on ordinal implementation, as
in Hurwicz & Schmeidler (1978) and Hurwicz (1979). More recently, Chen & Micali (2015) use
possibilistic beliefs to study implementation of single-good auction formats. Among other things,
they obtain a positive full implementation for their revenue benchmark using a solution concept
based on strict dominance by possibly mixed actions. In our complete information setting, this
dominance relation is the same as if player’s are standard Bayesian players with cardinal utilities
and probabilistic beliefs (cf. Pearce (1984)), which we discussed already in Section 5.5. Their
implementation notion only requires mutual belief of players not choosing undominated actions.
Clearly, Optimism and Mutual Belief in Optimism is behaviorally more selective then their re-
quirement, which would make full implementation easier. In particular, their revenue benchmark
can be implemented fully under Optimism and Mutual Belief in Optimism. On the other hand, as
illustrated with Example 2 (in Section 5.5) and Example 4, no connection of their procedure with
Pessimism and Mutual Belief in Pessimism can be established in general. Therefore, it remains
an open question whether their benchmark can be fully implemented if players are pessimistic.
We leave this question and, more generally, extending our framework to incomplete information to
analyze mechanism design problems for future research.

5.7 Topological Assumptions

Given the results in Mariotti et al. (2005), our analysis cannot dispense from the topological
assumptions regarding compact Hausdorfness. However, in Remark A.1 we recall that this as-
sumption makes all the possible events contemplated by our players be events in the measurable
sense of the term. Additionally, in Proposition 1, we show how the epistemic events of interest for
our tropical players are all measurable.

Appendix

A. Proofs

A.1 Proofs of Section 2

Given an arbitrary topological space X, B(X) denotes its Borel σ-algebra and |X| its cardinality.
Given our topological assumptions spelled out in Section 2, we can state the following remark.

Remark A.1 (Measurability). If X is compact Hausdorff, then K (X) ⊆ B(X).
27Equivalently, R being strictly dominated by the pure action C implies R /∈ B1

b and Weinstein (2016, Proposition
3) establishes B1

b as the limit of the Rationalizability correspondence.
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We provide a unique proof for all the results in Section 2. Thus, in the following—joint—proof,
we let

(S, ρ,E) ∈
{

(P, ρmax,O),
(
W, ρmin,P

) }
.

Remark A.2. For every E ∈ {O,P} and i ∈ I,

projΩi
CBn(E) = projΩi

CBn−1(E) ∩ Bi
(

projΩ−i
CBn−1(E)

)
, (A.1)

for every n ∈ N.

Proof of Proposition 1. Fix a game Γ, a tuple (S, ρ,E), and a player i ∈ I. In light of Remark A.2,
we are going to establish the truth of Equation (A.1). To do so, we proceed by induction on n ∈ N.

• (n = 0) First of all, notice that, since

projΩi
CB0(E) = Ei =

⋃
ai∈Ai

[
{ai} × projTi

(Ei ∩ ({ai} × Ti))
]
,

we have to prove that projTi
(Ei ∩ ({a∗i } × Ti)) is closed for an arbitrary a∗i ∈ Ai. Now, we have

that

projTi
(Ei ∩ ({a∗i } × Ti)) = π−1

i

({
ξi ∈ K (A−i × T−i)

∣∣∣ a∗i ∈ ρi(projA−i
ξi

) })
.

Thus, since πi is continuous by assumption, we simply have to show that the set{
ξi ∈ K (A−i × T−i)

∣∣∣ a∗i ∈ ρi(projA−i
ξi

) }
is closed. Let (ξ̃`i )

`∈N ⊆ Ω−i be a sequence such that a∗i ∈ ρi
(

projA−i
ξ̃`i

)
for every ` ∈ N and

assume that ξ̃`i → ξ̃i. Thus, we need to prove that a∗i ∈ ρi
(

projA−i
ξ̃i

)
. Now, for every ` ∈ N,

projA−i
ξ̃`i ⊆ A−i with A−i finite and—by assumption—endowed with the discrete topology.

Also, recall that convergence of a sequence in the discrete topology means that there exists a
k̂ ∈ N such that, for every m > k̂, projA−i

ξ̃k̂i = projA−i
ξ̃mi . Thus, we have—a fortiori—also

that projA−i
ξ̃i = projA−i

ξ̃k̂i . Hence, it follows that a∗i ∈ ρi
(

projA−i
ξ̃i

)
.

• (n ≥ 1) Assume the result holds for n ∈ N . Thus, we have to prove that CBn+1(E) ∈ K (Ω). Let
i ∈ I be arbitrary and, focusing on Equation (A.1), observe that we have projΩi

CBn(E) ∈ K (Ω),

from the induction hypothesis. Thus, it remains to prove that Bi
(

projΩ−i
CBn(E)

)
∈ K (Ωi).

Now, notice that

Bi
(

projΩ−i
CBn(E)

)
= π−1

i

({
ξi ∈ K (A−i × T−i)

∣∣∣ ξi ⊆ projΩ−i
CBn(E)

})
.

Thus, since πi is continuous by assumption, we simply have to show that the set{
ξi ∈ K (A−i × T−i)

∣∣∣ ξi ⊆ projΩ−i
CBn(E)

}
is closed, which is immediately established by noticing that projΩ−i

CBn(E) is closed from the
induction hypothesis.

This establishes the result. �

A.2 Proofs of Section 3

As for the results in the previous section, we provide a unique proof for all the results in Section 3.
Thus, in the following—joint—proof, we again let

(S, ρ,E) ∈
{

(P, ρmax,O),
(
W, ρmin,P

) }
.
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We divide the proof of Theorem 2/Theorem 3 in two parts for clarity of exposition. Of course
we start from part (i) and then move to part (ii). Concerning part (i), we need additional notation.
That is, given an action-type pair (a∗i , t̃i) ∈ Ai × Ti, we let κt̃ii ∈ K (A−i) be defined as

κt̃ii :=

{a
∗
−i} : a∗−i ∈ arg max

a−i∈ϕi(t̃i)
ui(a

∗
i , a−i), if (S, ρ,E) = (P, ρmax,O),

ϕi(t̃i) ⊆ A−i, otherwise
(A.2)

where in both cases we have by construction that κt̃ii ⊆ ϕi(t̃i).

Proof of Theorem 2/Theorem 3(i). We divide the proof in two parts. We proceed by proving
Equation (3.3)/Equation (3.9) first and then move to prove Equation (3.4)/Equation (3.10). Fix
a tuple (S, ρ,E).

• Regarding the proof of Equation (3.3)/Equation (3.9), we proceed by induction on n ∈ N.

– (n = 0) Let (a∗, t̃) ∈ E and i ∈ I be arbitrary. Let κt̃ii ∈ K (A−i) be defined as in Equa-
tion (A.2). From our assumption, a∗i ∈ ρi

(
κt̃ii
)
. Hence, a∗i ∈ S1

i .

– (n ≥ 1) Fix a n ∈ N, assume the result holds for n − 1, and let (a∗, t̃) ∈ CBn(E) and
i ∈ I be arbitrary. Hence, πi(t̃i) ⊆ projΩ−i

CBn−1(E). Let κt̃ii ∈ K (A−i) be defined as in

Equation (A.2). From the induction hypothesis, κt̃ii ⊆ Sn−i. Thus, since—a fortiori—we have
that (a∗i , t̃i) ∈ Ei, it is the case that a∗i ∈ ρi

(
κt̃ii
)
. Hence, it follows that a∗i ∈ Sn+1

i , because
κt̃ii ⊆ Sn−i.

• Equation (3.4)/Equation (3.10) immediately follow from Equation (3.3)/Equation (3.9), the
finiteness assumption, and the nonemptiness of the solution concepts. �

Proof of Theorem 2/Theorem 3(ii). We assume P∗ to be a belief-complete possibility structure.
Fix a tuple (S, ρ,E).

• We now prove Equation (3.5)/Equation (3.11). Clearly, one side of the result has already been
established in the proof of part (i). Thus, we establish the other side of the result by proceeding
again by induction on n ∈ N.

– (n = 0) Fix a profile of actions a∗ ∈ S1 and let i ∈ I be arbitrary. Then there exists a
κi ∈ K (A−i) such that a∗i ∈ ρi(κi). From the belief-completeness of P∗, there exists a type
t̃i ∈ Ti such that πi(t̃i) = κi × T−i. Thus, it follows that (a∗i , t̃i) ∈ Ei by construction. Since
the player i was chosen arbitrarily, the result follows.

– (n ≥ 1) Fix a n ∈ N, assume the result holds for n− 1, and fix a profile of actions a∗ ∈ Sn+1.
Let i ∈ I be arbitrary. Then there exists a κi ∈ K (A−i) with κi ⊆ Sn−i such that a∗i ∈ ρi(κi).
From the induction hypothesis, for every a−i ∈ κi there exists a type ta−i

−i ∈ T−i such that
(a−i, t

a−i

−i ) ∈ projΩ−i
CBn−1(E). Hence, from the belief-completeness of P∗, there exists a

type t̃i ∈ Ti such that

πi(t̃i) :=
{ (
a−i, t

a−i

−i
)
∈ A−i × T−i

∣∣ a−i ∈ κi }
and—by construction—we have that (a∗i , t̃i) ∈ proji CB

n(E). Since player i was chosen arbi-
trarily, the result follows.

• We now prove Equation (3.6)/Equation (3.12), where—again—we already established one side
in the proof above. Thus, first of all, observe that CB∞(E) 6= ∅. This is a consequence of the
fact that Sn 6= ∅ for every n ∈ N and that T is compact Hausdorff by assumption. Hence,
(CBm(E))m≥0 is a nested family of nonempty closed sets having the finite intersection property.
Let n := min

{
n ∈ N

∣∣ Sn = Sn+1 = S∞
}
. Let a∗ ∈ Sn = S∞ be arbitrary. Let

M `(n, a∗) :=

{
{a∗} × T, if n = 0,

CBn−1+`(E) ∩ ({a∗} × T ), otherwise,
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for every ` ≥ 0. Notice that this definition induces a sequence of sets. Since every M `(n, a∗) is
nonempty and closed and the sequence of sets is decreasing, it has the finite intersection property.
Hence, there exists a t∗ ∈ T such that (a∗, t∗) ∈

⋂
`≥0M

`(n, a∗) ⊆ CB∞(E).

This completes the proof of part (ii). �

Proof of Proposition 4. We proceed by induction on n ∈ N.

• (n = 0) Trivial.

• (n ≥ 1) Fix a n ∈ N and assume the result holds for n− 1. Let a∗ ∈ Pn and i ∈ I be arbitrary.
Hence, there exists a a−i ∈ Pn−1

−i such that a∗i ∈ ρmax
i (κi), with κi := {a−i}. Let Â−i := κi.

Then, a fortiori also a∗i ∈ ρmin
i (κi).

This completes the proof. �

A.3 Proofs of Section 4

Regarding the measurability as in Proposition 5 of CBn(A), for every n ≥ 0, and ACBA, the proofs
in Appendix A.1 apply verbatim with (S, ρ,E) =

(
B, ρB ,A

)
, where the same applies to the proof

of Theorem 6 as proved in Appendix A.2 with κt̃ii ∈ K (A−i) be defined as κt̃ii := ϕi(t̃i) ⊆ A−i.

Proof of Proposition 7. We fix a game Γ and proceed by induction on n ∈ N.

• (n = 0) Trivial

• (n ≥ 1) Fix a n ∈ N and assume the result holds for n− 1. Let a∗ ∈ Pn and i ∈ I be arbitrary.
Hence, there exists a κi ∈ K (A−i) such that a∗i ∈ ρmax

i (κi), with κi := {ã−i} for a ã−i ∈ Pn−1
−i .

From the induction hypothesis, ã−i ∈ Bn−1
i Hence, a∗i ∈ ρBi (κi).

This completes the proof. �

Proof of Proposition 8. In generic games, given an arbitrary player i ∈ I, an action ai ∈ Ai is
B-dominated if and only if it is strictly dominated by a pure action.28 Hence, this establishes the
result, for every n ∈ N. �
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